Algebras of Higher Operads as Enriched Categories
نویسندگان
چکیده
منابع مشابه
Algebras of Higher Operads as Enriched Categories
One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads [1] to this task. We present a general construction of a tensor product on the category of n-globular sets from any normalised (n + 1)-operad A, in such a way that the algebras for A ma...
متن کاملAlgebras of higher operads as enriched categories II
One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we continue the work of [7] to adapt the machinery of globular operads [4] to this task. The resulting theory includes the Gray tensor product of 2-categories and the Crans tensor product [12] of Gray categories. Moreover much of the pre...
متن کامل5 M ar 2 00 8 Algebras of higher operads as enriched categories
We decribe the correspondence between normalised ω-operads in the sense of [1] and certain lax monoidal structures on the category of globular sets. As with ordinary monoidal categories, one has a notion of category enriched in a lax monoidal category. Within the aforementioned correspondence, we provide also an equivalence between the algebras of a given normalised ωoperad, and categories enri...
متن کاملalgebras , operads and tensor categories
We study the operadic and categorical formulations of (conformal) full field algebras. In particular, we show that a grading-restricted R × R-graded full field algebra is equivalent to an algebra over a partial operad constructed from spheres with punctures and local coordinates. This result is generalized to conformal full field algebras over V L ⊗ V R , where V L and V R are two vertex operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Categorical Structures
سال: 2008
ISSN: 0927-2852,1572-9095
DOI: 10.1007/s10485-008-9179-7